40 research outputs found

    Fuzzy sliding mode control of an offshore container crane

    Full text link
    © 2017 A fuzzy sliding mode control strategy for offshore container cranes is investigated in this study. The offshore operations of loading and unloading containers are performed between a mega container ship, called the mother ship, and a smaller ship, called the mobile harbor (MH), which is equipped with a container crane. The MH is used to transfer the containers, in the open sea, and deliver them to a conventional stevedoring port, thereby minimizing the port congestion and also eliminating the need of expanding outwards. The control objective during the loading and unloading process is to keep the payload in a desired tolerance in harsh conditions of the MH motion. The proposed control strategy combines a fuzzy sliding mode control law and a prediction algorithm based on Kalman filtering for the MH roll angle. Here, the sliding surface is designed to incorporate the desired trolley trajectory while suppressing the sway motion of the payload. To improve the control performance, the discontinuous gain of the sliding control is adjusted with fuzzy logic tuning schemes with respect to the sliding function and its rate of change. Chattering is further reduced by a saturation function. Simulation and experimental results are provided to verify the effectiveness of the proposed control system for offshore container cranes

    Applicability of an integrated moving sponge biocarrier-osmotic membrane bioreactor MD system for saline wastewater treatment using highly salt-tolerant microorganisms

    Full text link
    © 2017 Elsevier B.V. Osmotic membrane bioreactors (OsMBRs) are a recent breakthrough technology designed to treat wastewater. Nevertheless, their application in high-salinity wastewater treatment is not widespread because of the effects of saline conditions on microbial community activity. In response, this study developed an integrated sponge biocarrier-OsMBR system using highly salt-tolerant microorganisms for treating saline wastewater. Results showed that the sponge biocarrier-OsMBR obtained an average water flux of 2 L/m2 h during a 92-day operation when 1 M MgCl2 was used as the draw solution. The efficiency in removing dissolved organic compounds from the proposed system was more than 99%, and nutrient rejection was close to 100%, indicating excellent performance in simultaneous nitrification and denitrification processes in the biofilm layer on the carriers. Moreover, salt-tolerant microorganisms in the sponge biocarrier-OsMBR system worked efficiently in salt concentrations of 2.4%. A polytetrafluoroethylene MD membrane (pores = 0.45 μm) served to regenerate the diluted draw solution in the closed-loop system and produce high-quality water. The moving sponge biocarrier-OsMBR/MD hybrid system demonstrated its potential to treat salinity wastewater treatment, with 100% nutrient removal and 99.9% conductivity rejection

    Current status of urban wastewater treatment plants in China

    Full text link
    © 2016 Elsevier Ltd. The study reported and analyzed the current state of wastewater treatment plants (WWTPs) in urban China from the perspective of treatment technologies, pollutant removals, operating load and effluent discharge standards. By the end of 2013, 3508 WWTPs have been built in 31 provinces and cities in China with a total treatment capacity of 1.48 × 108 m3/d. The uneven population distribution between China's east and west regions has resulted in notably different economic development outcomes. The technologies mostly used in WWTPs are AAO and oxidation ditch, which account for over 50% of the existing WWTPs. According to statistics, the efficiencies of COD and NH3-N removal are good in 656 WWTPs in 70 cities. The overall average COD removal is over 88% with few regional differences. The average removal efficiency of NH3-N is up to 80%. Large differences exist between the operating loads applied in different WWTPs. The average operating loading rate is approximately 83%, and 52% of WWTPs operate at loadings of <80%, treating up to 40% of the wastewater generated. The implementation of discharge standards has been low. Approximately 28% of WWTPs that achieved the Grade I-A Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant (GB 18918-2002) were constructed after 2010. The sludge treatment and recycling rates are only 25%, and approximately 15% of wastewater is inefficiently treated. Approximately 60% of WWTPs have capacities of 1 × 104 m3/d-5 × 104 m3/d. Relatively high energy consumption is required for small-scale processing, and the utilization rate of recycled wastewater is low. The challenges of WWTPs are discussed with the aim of developing rational criteria and appropriate technologies for water recycling. Suggestions regarding potential technical and administrative measures are provided

    Transformation and utilization of slowly biodegradable organic matters in biological sewage treatment of anaerobic anoxic oxic systems

    Full text link
    © 2016 Elsevier Ltd. This study examined the distribution of carbon sources in two anaerobic anoxic oxic (AAO) sewage treatment plants in Xi'an and investigated the transformation characteristics and utilization potential of slowly biodegradable organic matters (SBOM). Results indicated under anaerobic and aerobic conditions, SBOM could be transformed at a rate of 65% in 8 h into more readily biologically utilizable substrates such as volatile fatty acids (VFAs), polysaccharides and proteins. Additionally, non-biodegradable humus-type substances which are difficult to biodegrade and readily accumulate, were also generated. These products could be further hydrolyzed to aldehyde and ketone compounds and then transformed into substances with significant oxygen-containing functional groups and utilized subsequently. The molecular weights of proteinoid substances had a wide distribution and tended to decrease over time. Long hours of microbial reaction increased the proportion of micromolecular substances. This particular increase generated significant bioavailability, which can greatly improve the efficiency of nitrogen removal

    Complete genome characterization of two wild-type measles viruses from Vietnamese infants during the 2014 outbreak

    Get PDF
    A large measles virus outbreak occurred across Vietnam in 2014. We identified and obtained complete measles virus genomes in stool samples collected from two diarrheal pediatric patients in Dong Thap Province. These are the first complete genome sequences of circulating measles viruses in Vietnam during the 2014 measles outbreak

    Genome sequences of a novel Vietnamese bat bunyavirus

    Get PDF
    To document the viral zoonotic risks in Vietnam, fecal samples were systematically collected from a number of mammals in southern Vietnam and subjected to agnostic deep sequencing. We describe here novel Vietnamese bunyavirus sequences detected in bat feces. The complete L and S segments from 14 viruses were determined

    Active control of an offshore container crane

    Full text link
    © 2015 Institute of Control, Robotics and Systems - ICROS. Open sea loading/unloading cargos provides a potential solution to tack the problem related with port construction, expansion and congestion. This process involves a crane attached to a mobile harbor (MH) which can dynamically handle container from a large container anchored in deep water. The control objective during the operation is to maintain the payload in the desired position in the presence of ocean waves. This paper presents a robust control strategy for trajectory tracking and sway suppression of an offshore container crane. A fuzzy sliding mode control law is proposed for that. Experimental results are provided to indicate the efficiency of the proposed control strategy

    Development of a water cycle management approach to Sponge City construction in Xi'an, China

    Full text link
    © 2019 In recent years, climate change, population growth, and inefficient use of water have exacerbated the water resources scarcity problems around the world. Hence, this paper establishes a new approach of Sponge City construction (SCC) based on water cycle management (WCM) for the sustainable exploitation of groundwater, recycled wastewater and rainwater in the Xi'an Siyuan University. The University is located in an isolated area that is far away from the city center so that no centralized water supply system could be utilized. To mitigate water scarcity problems in the University, 39% of the annual rainfall is harvested and stored from impervious surfaces and grasslands by using the Curve Number (CN) method. This stored water is reused for non-potable purposes: 40% for toilet flushing and 60% as miscellaneous water. According to findings, the available rainwater of500–700 m3/d accounts for 16–23% of the non-potable water from April to December. Moreover, the utilization rate of water resources increases from 204% to 227%. With the minimum volume of large-scale rainwater harvesting cistern of 52,760 m3, the environment could be adequately watered while improving the expansion and development conditions on the campus. Furthermore, water scarcity problems could be mitigated through optimization of the water resources utilization system. This study demonstrates that this new approach of SCC based on WCM could alleviate water resources scarcity problems in Xi'an Siyuan University effectively. It is hoped that this study will provide a model and example of the new approach for future applications

    Limited contribution of non-intensive chicken farming to ESBL-producing Escherichia coli colonization in humans in Vietnam: an epidemiological and genomic analysis

    No full text
    Objectives To investigate the risk of colonization with ESBL-producing Escherichia coli (ESBL-Ec) in humans in Vietnam associated with non-intensive chicken farming. Methods Faecal samples from 204 randomly selected farmers and their chickens, and from 306 age- and sex-matched community-based individuals who did not raise poultry were collected. Antimicrobial usage in chickens and humans was assessed by medicine cabinet surveys. WGS was employed to obtain a high-resolution genomic comparison between ESBL-Ec isolated from humans and chickens. Results The adjusted prevalence of ESBL-Ec colonization was 20.0% (95% CI 10.8%–29.1%) and 35.2% (95% CI 30.4%–40.1%) in chicken farms and humans in Vietnam, respectively. Colonization with ESBL-Ec in humans was associated with antimicrobial usage (OR = 2.52, 95% CI = 1.08–5.87) but not with involvement in chicken farming. blaCTX-M-55 was the most common ESBL-encoding gene in strains isolated from chickens (74.4%) compared with blaCTX-M-27 in human strains (47.0%). In 3 of 204 (1.5%) of the farms, identical ESBL genes were detected in ESBL-Ec isolated from farmers and their chickens. Genomic similarity indicating recent sharing of ESBL-Ec between chickens and farmers was found in only one of these farms. Conclusion The integration of epidemiological and genomic data in this study has demonstrated a limited contribution of non-intensive chicken farming to ESBL-Ec colonization in humans in Vietnam and further emphasizes the importance of reducing antimicrobial usage in both human and animal host reservoirs.</p
    corecore